
New properties of strontium titanate are significant for electronics research
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
While studying strontium titanate with electron paramagnetic resonance, a team from KFU's Center for Quantum Technology has found that the shape of a specimen of strontium titanate influences its internal symmetry. The research was co-conducted by the Ioffe Institute of Physics and Technology (Russia) and the Institute of Physics of the Czech Academy of Sciences.
A Clemson University physicist and collaborators from China and Denmark have created a new and potentially paradigm-shifting high-performance thermoelectric compound.
EPFL scientists have developed ultralow-loss silicon nitride integrated circuits that are central for many photonic devices, such as chip-scale frequency combs, narrow-linewidth lasers, coherent LiDAR, and neuromorphic computing.
What are the most effective ways to leverage and augment smartphone capabilities? Helpful guidelines are provided in a critical review of emerging smartphone-based imaging systems recently published in the Journal of Biomedical Optics (JBO).
Florida State University researchers have discovered a novel way to improve the performance of electrical wires used as high-temperature superconductors (HTS), findings that have the potential to power a new generation of particle accelerators.
Hafnium-based thin films, with a thickness of only a few nanometres, show an unconventional form of ferroelectricity. This allows the construction of nanometre-sized memories or logic devices. However, it was not clear how ferroelectricity could occur at this scale. A study that was led by scientists from the University of Groningen showed how atoms move in a hafnium-based capacitor: migrating oxygen atoms (or vacancies) are responsible for the observed switching and storage of charge.
Drones could soon be adopted as essential tools for various agricultural tasks; however, with respect to their use in farm management, research is still lacking. To address this issue, researchers in Japan compared drones to well-established technologies for spraying pesticide over rice paddy fields. Using statistical data, the researchers explore both advantages and limitations of drones and whether they currently offer an edge regarding costs, capacity, and management efficiency.
There is no cheaper way to generate electricity today than with the sun. Solar cells available on the market based on crystalline silicon make this possible with efficiencies of up to 23 percent. With even higher efficiencies of more than 26 percent, costs could fall further. An international working group led by photovoltaics researchers from Forschungszentrum Jülich now plan to reach this goal with a nanostructured, transparent material for the front of solar cells.
A team of researchers from QuTech in the Netherlands reports realization of the first multi-node quantum network, connecting three quantum processors. In addition, they achieved a proof-of-principle demonstration of key quantum network protocols. Their findings mark an important milestone towards the future quantum internet and have now been published in Science.
An international team of researchers led by UC Riverside has observed picosecond charge transfer mediated by hydrogen bonds in peptides. A picosecond is one trillionth of a second. As short-chain analogs of proteins, crucially important building blocks of living organisms, peptides are chains of chemically linked amino acids. The discovery shows the role of hydrogen bonds in electron transfer.