
Simulations reveal how dominant SARS-CoV-2 strain binds to host, succumbs to antibodies
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Large-scale supercomputer simulations at the atomic level show that the dominant G form variant of the COVID-19-causing virus is more infectious partly because of its greater ability to readily bind to its target host receptor in the body, compared to other variants.
Professor Junsuk Rho's research team at POSTECH develops wearable gas sensors that display instantaneous visual holographic alarm.
South Korea's Ulsan National Institute of Science and Technology (UNIST) has proposed a satellite-aided drought monitoring method that can adequately represent the complex drought conditions into a single integrated drought index.
What are the most effective ways to leverage and augment smartphone capabilities? Helpful guidelines are provided in a critical review of emerging smartphone-based imaging systems recently published in the Journal of Biomedical Optics (JBO).
Hafnium-based thin films, with a thickness of only a few nanometres, show an unconventional form of ferroelectricity. This allows the construction of nanometre-sized memories or logic devices. However, it was not clear how ferroelectricity could occur at this scale. A study that was led by scientists from the University of Groningen showed how atoms move in a hafnium-based capacitor: migrating oxygen atoms (or vacancies) are responsible for the observed switching and storage of charge.
Triple-negative breast cancer is an aggressive type of breast cancer with a high fatality rate. Currently, chemotherapy is the major treatment option, but the clinical result is unsatisfactory. A research team led by biologists at City University of Hong Kong (CityU) has identified and characterised a set of specific super-enhancers that stimulate the activity of the related critical cancer genes. The latest findings may help discover new effective drug targets for TNBC patients to improve their survival chance.
University of California Berkeley researchers initiated a collaboration that gathered engineers from different universities worldwide to create a photonic MEMS switch using a commercially available complementary metal-oxide-semiconductor (CMOS) fabrication process without modification. The use of this well-known microfabrication platform represents a huge step toward industrialization because it is compatible with most current technologies, cost-effective, and suited for high-volume production.
New research shows how to measure the super-short bursts of high-frequency light emitted from free electron lasers (FELs). By using the light-induced ionization itself to create a femtosecond optical shutter, the technique encodes the electric field of the FEL pulse in a visible light pulse so that it can be measured with a standard, slow, visible-light camera.
New research in Science Advances provides template for developing directly-acting antivirals with novel modes of action, that would combat COVID-19 by suppressing the SARS-CoV-2 viral infection. The study focused on the macrodomain part of the Nsp3 gene product that SARS-CoV-2 uses to suppress the host cell's natural antiviral response. Viruses that lack it cannot replicate in human cells, suggesting that blocking it with a drug would have the same effect.
A team of scientists from the University of Exeter and the University of Auckland have made a breakthrough in the quest to better understand how neural systems are able to process and store information.